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When water is slightly stratified, internal gravity waves are considerably shorter 
than surface waves of comparable frequency. Here, this fact is exploited in 
demonstrating that an internal wave is unstable when it forms part of a resonant 
triad with a surface wave and another internal wave whose wavenumber is 
approximatelyequal to that of the original internal wave. It is suggested that in a 
system where there are two classes of waves of comparable frequencies but 
greatly differing wavelengths the short waves may be expected to generate long 
waves by this mechanism. 

1. Introduction 
I n  the last decade a large body of knowledge has been gathered concerning 

weakly nonlinear interactions between trains of gravity waves. These inter- 
actions are of particular importance when the frequencies w j  and wavenumbers kj 
satisfy, or nearly satisfy, the resonance conditions 

where o3 and kj are connected by a dispersion relation. Despite the invention of 
ingeneous geometrical constructions, it is often difficult to determine whether 
such sets of waves exist and more difficult to determine the members of such sets 
(Ball 1964; Thorpe 1966; Simmons 1969). However, there are a few special 
circumstances in which the resonance conditions present no difficulty. For 
example, four waves of the same class with almost equal wavenumbers can be 
combined in such a way that (1) is almost satisfied (Benjamin & Feir 1967). 
Again, in a system where there are two classes of waves of comparable wave- 
numbers but vastly different frequencies, two high frequency waves of almost 
identical frequency but distinct wavenumbers k, and k, can form a resonant 
triad with a low frequency wave of wavenumber k, - k, (Phillips 1966, p. 172). 

For progressive waves there is considerable duality between the spatial and 
temporal variations (i.e. for most purposes x and t are interchangeable), and in 
this paper we shall study a class of wave interactions which can be considered as 
being the dual of the final example described above. Thus we are concerned with a 
system where there are two classes of waves of comparable frequencies but vastly 
different wavenumbers and hence two short waves of almost identical wave- 
numbers but distinct frequencies w1 and w 2  can form a resonant triad with a long 
wave of frequency w1 - w2. 
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The system which will be examined in detail is slightly stratified water where 
the short and long waves are internal and surface waves respectively. We shall be 
particularly concerned with the role of the resonant triad as an instability 
mechanism for internal waves, It is clear that the minimum amplitude for which 
there is an instability will depend strongly upon the attenuation rates of the 
three interacting waves. Here attenuation will be allowed for solely through the 
use of empirical factors, which are envisaged as giving the correct decay rates 
when there are no interactions. For waves of a fixed wavenumber it is known that 
dissipation produces frequency shifts of the same small order as the attenuation 
rates (Le Blond 1966). However, it can readily be shown that all the results in 
this paper are extremely insensitiive to the frequency shifts but not to the decay 
rates. 

2. Interaction equations 
The equations of motion and boundary conditions for small amplitude motions 

of an inviscid, slightly stratified, incompressible fluid can be reduced to the form 
(Phillips 1966, p. 162) 

(o;+ g) w + N Z V ; ~  = Q, 

zy) at2 a2 -gViw = R a t  z = 0,  

W = O  at Z = - D .  ) 

Here 0, denotes the horizontal gradient operator (alax, a/ay, 0 ) ,  z is the vertical 
co-ordinate, N the Brunt-Vaisala frequency, D the depth of the water and Q,  R 
are nonlinear terms of considerable complexity (see the appendix). 

Let W ( z ;  m, n) be a solution to the eigenvalue problem 

d2W + N2m2 
-@ (,-m2)W=O, 

W = O  a t  z = O ,  dW gm2 
dz n2 

W = O  a t  z = - D ,  

where, without loss of generality, we shall assume that W is normalized by the 
condition 'so W 2 d z =  1. 

For each eigenvalue pair rn, n it is straightforward to derive a single equation 
from the system (2): i.e. 

D - D  

f : D W ( ( g V f - n 2 m 2  w+N2(Vi+m2)w-Q I dz 

+ [W{g(Vi + m2) w + R}],=, = 0. (3) 
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For the instability mechanism under consideration it suffices to represent the 
vertical component of velocity by 

w = W(z;k,wl)(CDlexp[iw,t+ik.x]+*} 
+ W ( z ;  k, w2)  {CD2exp [iw2t +i(k- ( 1  +8) K) . X I  + *} 
+ w(2; K, W 1 -  0 2 )  {@3eXp [ i (V-  wz) t  + i( 1 f 8 ) K .  X] + *} + W’, (4a) 

where CDl, CD2, CD3 are the slowly varying amplitudes of the three interacting waves, 
k is the wavenumber of the original internal wave, K is the wavenumber of an 
unforced surface wave of frequency w1 - w2, S is a small number which allows for 
the fact that the surface wave is a forced wave, * denotes the complex conjugate 
of explicitly wrikten terms and w‘ indicates other contributions to w which play 
no role in the interactions. In  a like manner we represent Q and R by the ex- 
pressions 

(Qlexp [iwlt +ik.  x] + Q2exp [iw,t + i(k - (1 + S) K) . x] 
+ &3 exp [ i (q  - wz)  t + i( 1 + 6) K . XI + *} + &’ (4 b )  

+ R3exp [i(w, - w2)t + i( 1 + S ) K .  x] + *} + R’. 

and 
(R, exp [iwlt + ik. x] + R2exp [iw,t + i(k - (1 + 8) K) . x] 

(4c) 

We note that the form of (4a) implies that w2 and K are determined through 
Che explicit equations 

w2 = w,(k) and K = K ( w ~ - w ~ )  

rather than through the more complicated exact implicit equations 

w2 = w,(k-K) and K = K ( w ~ - ~ ~ ) .  

However, in this paper we shall repeatedly make use of the fact that ~ l k  is very 
small, which introduces errors of the same order as the errors involved when 
using explicit expressions for w2 and K .  

By substituting the representation (4) into (3) and then extracting the 
exp [ iw,  t + k .  x] coefficient of the k, w1 equation we obtain the relationship 

where second and higher derivatives of CD, have been neglected on the assumption 
that the wave amplitude varies slowly and the term v1 CDl is an empirical repre- 
sentation of the effects of dissipation. The corresponding equations for CD, and 
CD3 are 
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and 

where considerable use has been made of the facts that 6 and ~ l k  are very small. 

3. Instability theory 

can be written in the form 
Equations ( 5 ) )  with the nonlinear coupling terms as given in the appendix, 

(Ga) 

( 6 b )  

(6c) 

a@., - + c,. Oh@,+ v, Q1 = B +a,@,@,, 
at 

a@, 

a@>, - + c,. v, @, + v, @, + isc,. K@, = a, @, a;, 
at 

7 + C2. v,@2+ V 2 Q 2 - i C 2 .  KQ2 = CC2Q1@)ile, 

where the cj are the group velocities of the three waves, the cti are coupling 
coefficients and B represents the means whereby the original internal wave is 
driven (possibly through an instability of a short surface wave). Other examples 
of the mechanism under consideration will lead to equations of the same form 
as (6). 

In  considering the onset of instability it is convenient to assume that the wave 
amplitude @, of the original wave is constant. Such a state could be achieved in 
practice if the forcing term B were constant. In  such a situation equations ( 6 b )  
and (6 c) are coupled linear constant-coefficient equations. Solutions proportional 
to exp [ist + im. x] may be sought, and this leads to the characteristic equation 

(s + c2. (m - K) - iv,) (s + c3. (m + 6 ~ )  - iv,) + a3 a; I @, 12 = 0. 

The system is unstable if a disturbance which grows in time exists. Thus we seek 
that real value of m which maximizes the growth rate (i.e. minimizes the imagin- 
ary part of s). After a straightforward but lengthy calculation it can be shown 
that the appropriate value of m satisfies the equation 

m.(c,-cJ = - - . (Sc3+c2)-  (v2- v3)9(a3.Z, 

Ia3aZI + 9 ( a 3 G )  
and the maximum growth rate is 

a{[(v2- v3)2f 21 +%(%a;))]'- (v2 i- v3)>3 (7)  

where 92 and 9 respectively denote real and imaginary parts. We note that if 
a3aZ is both real and negative there cannot be any instability. 

Until now there have been no restrictions upon the direction of propagation of 
the long waves. However, from (7 )  it is clear that the growth rate of the long 
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waves will depend on their direction through the variations of v3, a, and as with 
K .  It is natural to expect the waves with the greatest growth rate to dominate. 
If 0 measures the angle between k and K ,  then a t  the direction of greatest growth 
rate 8 is given implicitly by the formula 

When the system is only slightly unstable, any anisotropy of the medium with 
respect to the long waves can cause the direction of greatest growth rate to be 
significantly changed from the direction that would be predicted from a theory 
which did not include some allowance for dissipation. 

I n  some circumstances there may be geometrical constraints, such as side walls 
in a wave tank, which restrict the long waves to one particular value of K. I n  such 
a case equations (6) provide a means of determining the motion which will 
develop. I n  particular, if B is constant then one possible final state is aDi = con- 
stant, provided that 6 takes the value 

Unfortunately it is not clear whether these steady solutions are stable. 

4. Applicability 

the Qj and Rj it can readily be shown that 
From equations (5) and the approximate expressions given in the appendix for 

, 

where I is a constant defined by the integral 

In practice there are usually two features which simplify the calculations of 
the functions W,, W,, W3. First, for the internal wave modes the surface x = 0 is 
effectively rigid; second, for the surface waves the water is quite shallow. For 
the instability mechanism this is an unfortunate combination of approxima- 
tions, since dW3/dz is constant and the orthogonality of the 'rigid lid' normal 
modes 1rieans that either w: - wg or I is zero. Thus, in order to get an explicit 
expression for a3a; we must calculate some second-order terms. For example, 
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if the shallow-water approximation is relaxed, then the first approximation for 

and provided that w; > wg the coupling constant a3at is non-negative. 
In the oceans we can expect wl, w2 and w1 - w2 to be of the order of N,, the 

maximum value of N .  Thus, with the above expression for I we can estimate 
a3at as being of the order k2Nk/g2K2. The results of Le Blond (1966) show that 
v2 is of the order 10-3 N,. Since v3 is negligible relative to v2 we can deduce from 
the above estimates and from ( 7 )  that for the onset of instability (Dl must be of 
the order 10-3g~/Nmk, or equivalently that the internal wave must have a dis- 
placement amplitude of the order glc/N;k. For the deep ocean N, is charac- 
teristically 5 x s-1 so the corresponding critical displacement amplitude is 
4 0 0 ~ / k m ,  which can be small because the factor ~ / k  is small. It should be noted 
that these estimates only apply when both the ‘rigid lid’ and the ~ l k <  1 
approximations are more accurately satisfied than the shallow-water approxi- 
mation. 

5. Discussion 
When one examines the structure of the calculations in $5  2 and 3, it becomes 

clear that the value of the coupling constant a3az is the only factor that depends 
upon the detailed physics of the situation. Equations of the form (6) are to be 
expected in any system with weak quadratic nonlinearities in which there are 
two classes of waves with greatly different wavelengths. Such systems are by no 
means rare: in the oceans, for example, baroclinic-Rossby, Kelvin, edge and 
continental-shelf waves all have barotropic counterparts with much greater 
wavelengths. Unfortunately, because there is the one exceptional case in which 
the coupling constant a3az is real and negative, there may be some circumstances 
where the resonant triad mechanism does not lead to the generation of long 
waves. 

Appendix 

and R, correct to second order in the wave amplitude, are 
Using the same notation as Phillips (1966, chapter 5) the expressions for Q 

and 

For a wave of the form 

o = W ( z ;  m, n)  4 exp [int + im . x] 

the expressions for the other symbols are 

. d W m  
q = %-- u = q+ w4, dz m2’ 
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W - i ( N 2 - n 2 ) -  b = i N 2 - ,  --- 
n Po82 n '  
w i ap 

5 = -iW/ ) 
n z=o 

where in each expression the factor $ exp [int + im . x] has been suppressed. 
Using the above equations iC is straightforward to evaluate the functions Qj 

and Ri which were introduced in equations (4). The full expressions for these 
functions are simplified considerably if we exploit the facts that K/E < 1 and that 
(wl - o ~ ) ~ / ~ K  is of order 1.  The simplified expressions are 

We note that if the higher order terms are required then it is necessary to use the 
exact dispersion relations in determining w2 and K. 
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